Tag Archives: flare

Winter Solstice 2015 Solar Storm Recap

Northern Lights Now – On December 20th and 21st of 2015 the third largest geomagnetic storm of solar cycle 24 treated aurora hunters to 30 hours of dancing lights. The long duration of the storm gave nighttime photographers in North America two opportunities to see the northern lights through gaps in the clouds. Aurora reports on Twitter filled the NLN feed with images first from Wisconsin, then Alberta, Alaska, New Zealand, Northern Europe, Austria, Germany, England, Ireland, Iceland and then the North America again. Here is a chart of the official NOAA/SWPC recorded KP values from Boulder during the storm:

Boulder recorded 30 hours of G1-G2 storming during the winter solstice storm. of 2015
Boulder recorded 30 hours of G1-G2 storming during the winter solstice storm. of 2015

This solar storm started from two events on the Sun’s surface. The first was a long duration C6.69 flare at nearly dead center in the Earth strike zone. The second was a filament eruption to the south and east of the first eruption. Both events produced CMEs. Read more about the pair of eruptions NLN’s initial blog post on this storm.

Giants Causeway in Northern Ireland by Roy Smith Photo:

The CMEs from these two storms arrived later than initially predicted. Initial predictions were that the leading edge of the CME would reach Earth early in the day on December 19. The CME’s initial interplanetary shock was detected in ACE satellite data around 1520 GMT. Those 15 hours were time that many nighttime photographers wished they were sleeping instead!

Once they arrived, the two storms hit in sequence, not quite merging. As the storms played out, both had strongly negative Bz. Negative Bz is an aurora hunter’s dream. Once the field shifts south, a good show is sure to come – but we never know Bz until Earth is in the CME cloud. Space Weather scientists are still anticipate a long time before Bz can be accurately predicted in advance of a CME arrival. For now, forecasters assume arriving CMEs plasma clouds have a roughly 50/50 chance of being oriented with a Bz south.

In the Winter Solstice Storm of 2015, once the Bz shifted south, it stayed strongly south for 32 hours from 02:30GUTC on the 20th through 1030UTC on the 21st. During that time, the Bz deflection remained around -16 to -18 nT. Interestingly, after the initial shock, solar wind speeds stayed relatively low at below 450km/s for the duration of the storm. Had solar wind speeds been stronger, it’s possible that G3 level storming might have occurred. The slow wind speeds probably increased the duration of the storm (if the CME was moving faster, it would have completed it’s pass by Earth more quickly).

With a special shoutout to @VirtualAstro who helped surface some of these, here are some of our favorite images from this worldwide display of northern lights:

Swirls of green glow behind snow covered pine trees in Alaska by David W. Shaw

Green and yellow arches in the sky behind a church in Alberta by Célestine Aerden:

A string of pearls in the sky, technically called Auroral Beads, @Inukphysiker called this “lightsabors in the sky”

Another star wars reference came from Notanee Bourassa with this light-sabor aurora selfie

Team Tanner in Alberta often captures wonderful northern lights images, this anelic set was from Theresa (Tree) Tanner:

Finally, a stunning backdrop of purples and greens behind a solitary KW photography in Upstate New York:

Happy Hunting!

M-Class Flare Promts G1 Aurora Storm Watch For November 11, 2015

An coronal mass ejection (CME) that resulted from a surprise M3.95 solar flare launched a from the Sun on Monday has prompted the NOAA Space Weather Prediction Center (SWPC) to issue a G1 geomagnetic storm watch for Veterans day and November 12th. As the CME arrives at Earth, aurora hunters may be treated to a display of northern lights further south than normal.

NLN Aurora cast clock from SWPC 3-day forecast shows 15 hours of G1 storming forecast.
NLN AuroraCast clock from SWPC 3-day forecast shows 15 hours of G1 storming forecast.

A G1 storm watch means that the KP, a global scale of geomagnetic and aurora activity, may reach five out on it’s 0-9 range. As the KP rises higher, aurora borealis can be seen at lower latitudes. KP=5 indicates that the lights can be seen throughout Canada, along the northern boarder of the Continental United States, Northern Europe, and southern New Zealand.

KP is notoriously hard to predict, about 50% of the time a G1 watch is in effect, the KP does not actually rise to that level, but a G1 watch also means that the KP could easily rise higher than five. If you want to know the current KP readings, your best option is to monitor live KP trackers, such as Northern Lights Now’s current live KP chart, which give an accurate KP forecast 35-70 minutes in advance.

The flare that launched the CME was a surprise. It launched from active region 2449, which had a Beta magnetic structure. Typically, active regions need to have a “delta” sunspot in their group and be classified Beta-Delta or Beta-Delta-Gamma. Nonetheless, the solar flare that launched was spectactular. Here is an animated gif of the solar region while the flare was happening. Note that this is a zoomed in image, but that the several Earths could fit in the flare area.

The M3.95 flare from November 9 from SDO imagery
The M3.95 flare from November 9 from SDO imagery over a 12 hour period

When flares eruptions are long duration, like this one was, they can generate CMEs. A coronal mass ejection is a cloud of solar plasma that shoots from the Sun. When a CME is moving towards Earth, it typically arrives between 2 and 4 days later. As the plasma cloud passes earth, it disrupts the magenetosphere and sends charged particles into our upper atmosphere. It is the interaction of those particles with the gases in out atmosphere that cause the dancing northern lights. Don’t worry though! This storm won’t be strong enough to have any impact at Earth’s surface – just enjoy the show!

Happy Hunting